Analysis of The Countries According to The Prosperity Level with Data Mining

Author:

KOLTAN YILMAZ Şebnem1ORCID,ŞENER Sibel2

Affiliation:

1. İNÖNÜ ÜNİVERSİTESİ

2. SIVAS CUMHURIYET UNIVERSITY

Abstract

Data mining (DM) includes techniques for finding meaningful information hidden in these massive data stacks. The aim of this study is to divide the countries into groups according to their prosperity levels with Cluster Analysis (CA), which is one of the DM techniques, and to show the applicability of the method. In this context, the 2019 data of 167 countries within the 12 prosperity indicators in The Legatum Prosperity Index (LPI) were used. In the study, countries were divided into groups with the Ward’s algorithm and the similarities between the countries were determined with the K-Means and Turkey's place in the groups was determined. The results show that countries are divided into three clusters according to their prosperity levels. The most effective indicators in dividing them into clusters are "market access and infrastructure, education, investment environment", and the least effective indicators are "social capital, natural environment, safety and security". It has been determined that Turkey is located in the middle prosperity level cluster and its "health, living conditions, education" indicators are the highest, while its "natural environment, personal freedom, management" indicators are the lowest.

Publisher

Alphanumeric Journal

Subject

Applied Mathematics,General Mathematics

Reference40 articles.

1. Abu Sharkh, M. and Gough, I. (2010). Global welfare regimes a cluster analysis. Global Social Policy, 10(1), 27–58.

2. Akar, S. (2014). Türkiye’de daha iyi yaşam endeksi: OECD ülkeleri ile karşilaştirma (The better life index in Turkey: Comparison with OECD countries). Journal of Life Economics, 1, 1-12.

3. Akar, H. (2015). Farklılaşan refah ölçüm yöntemleri ve eğitim açısından Türkiye’nin değerlendirilmesi (The diversifying measures of welfare and evaluation of Turkey in the context of education). Finans Politik & Ekonomik Yorumlar, 52(606), 21-38.

4. Akkuş, B. and Zontul, M. (2019). Veri madenciliği yöntemleri ile ülkeleri gelişmişlik ölçütlerine göre kümeleme üzerine bir uygulama (An application on clustering countries with data mining methods based on development criteria). AURUM Mühendislik Sistemleri ve Mimarlık Dergisi, 3(1), 51-64.

5. Albayrak, A. S. and Koltan Yılmaz, Ş. (2009). Veri madenciliği: Karar ağacı algoritmaları ve İMKB verileri üzerine bir uygulama (Data mining: Decision tree algorithms and an application on ISE data). Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Dergisi, 14(1), 31-52.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ANALYSIS OF TURKEY WITHIN THE FRAMEWORK OF THE LEGATUM PROSPERITY INDEX: 2007-2022;Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi;2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3