Deriving Boolean structures from distributional vectors

Author:

Kruszewski German1,Paperno Denis1,Baroni Marco1

Affiliation:

1. Center for Mind/Brain Sciences, University of Trento,

Abstract

Corpus-based distributional semantic models capture degrees of semantic relatedness among the words of very large vocabularies, but have problems with logical phenomena such as entailment, that are instead elegantly handled by model-theoretic approaches, which, in turn, do not scale up. We combine the advantages of the two views by inducing a mapping from distributional vectors of words (or sentences) into a Boolean structure of the kind in which natural language terms are assumed to denote. We evaluate this Boolean Distributional Semantic Model (BDSM) on recognizing entailment between words and sentences. The method achieves results comparable to a state-of-the-art SVM, degrades more gracefully when less training data are available and displays interesting qualitative properties.

Publisher

MIT Press - Journals

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Logical Reasoning for Referring Expression Comprehension;Proceedings of the 29th ACM International Conference on Multimedia;2021-10-17

2. Cultural cartography with word embeddings;Poetics;2021-10

3. Ideal Words;KI - Künstliche Intelligenz;2021-05-25

4. The Criteria, Challenges, and the Back-Propagation Method;Studies in Computational Intelligence;2020-08-25

5. Variations on Abstract Semantic Spaces;The Philosophy and Science of Language;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3