Temporal Annotation in the Clinical Domain

Author:

Styler William F.1,Bethard Steven2,Finan Sean3,Palmer Martha1,Pradhan Sameer3,de Groen Piet C4,Erickson Brad4,Miller Timothy3,Lin Chen3,Savova Guergana3,Pustejovsky James5

Affiliation:

1. Department of Linguistics, University of Colorado at Boulder

2. Department of Computer and Information Sciences, University of Alabama at Birmingham

3. Children’s Hospital Boston Informatics Program and Harvard Medical School

4. Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN

5. Department of Computer Science, Brandeis University

Abstract

This article discusses the requirements of a formal specification for the annotation of temporal information in clinical narratives. We discuss the implementation and extension of ISO-TimeML for annotating a corpus of clinical notes, known as the THYME corpus. To reflect the information task and the heavily inference-based reasoning demands in the domain, a new annotation guideline has been developed, “the THYME Guidelines to ISO-TimeML (THYME-TimeML)”. To clarify what relations merit annotation, we distinguish between linguistically-derived and inferentially-derived temporal orderings in the text. We also apply a top performing TempEval 2013 system against this new resource to measure the difficulty of adapting systems to the clinical domain. The corpus is available to the community and has been proposed for use in a SemEval 2015 task.

Publisher

MIT Press - Journals

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformers and large language models in healthcare: A review;Artificial Intelligence in Medicine;2024-08

2. Automatic TimeML Corpus Validation: Uncovering Errors and Inconsistencies in Gold-Standard Corpora;Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments;2024-06-26

3. Multimodal learning for temporal relation extraction in clinical texts;Journal of the American Medical Informatics Association;2024-03-26

4. Toward Clinical-Grade Evaluation of Large Language Models;International Journal of Radiation Oncology*Biology*Physics;2024-03

5. AI-Assisted Summarization of Radiologic Reports: Evaluating GPT3davinci, BARTcnn, LongT5booksum, LEDbooksum, LEDlegal, and LEDclinical;American Journal of Neuroradiology;2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3