Multimodal learning for temporal relation extraction in clinical texts

Author:

Knez Timotej1ORCID,Žitnik Slavko1

Affiliation:

1. Faculty of Computer and Information Science, University of Ljubljana , Ljubljana 1000, Slovenia

Abstract

Abstract Objectives This study focuses on refining temporal relation extraction within medical documents by introducing an innovative bimodal architecture. The overarching goal is to enhance our understanding of narrative processes in the medical domain, particularly through the analysis of extensive reports and notes concerning patient experiences. Materials and Methods Our approach involves the development of a bimodal architecture that seamlessly integrates information from both text documents and knowledge graphs. This integration serves to infuse common knowledge about events into the temporal relation extraction process. Rigorous testing was conducted on diverse clinical datasets, emulating real-world scenarios where the extraction of temporal relationships is paramount. Results The performance of our proposed bimodal architecture was thoroughly evaluated across multiple clinical datasets. Comparative analyses demonstrated its superiority over existing methods reliant solely on textual information for temporal relation extraction. Notably, the model showcased its effectiveness even in scenarios where not provided with additional information. Discussion The amalgamation of textual data and knowledge graph information in our bimodal architecture signifies a notable advancement in the field of temporal relation extraction. This approach addresses the critical need for a more profound understanding of narrative processes in medical contexts. Conclusion In conclusion, our study introduces a pioneering bimodal architecture that harnesses the synergy of text and knowledge graph data, exhibiting superior performance in temporal relation extraction from medical documents. This advancement holds significant promise for improving the comprehension of patients’ healthcare journeys and enhancing the overall effectiveness of extracting temporal relationships in complex medical narratives.

Funder

Slovenian Research Agency

Young Researchers grant

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3