Gender Bias in Machine Translation

Author:

Savoldi Beatrice12,Gaido Marco13,Bentivogli Luisa4,Negri Matteo5,Turchi Marco6

Affiliation:

1. University of Trento, Italy

2. Fondazione Bruno Kessler, Italy. bsavoldi@fbk.eu

3. Fondazione Bruno Kessler, Italy. mgaido@fbk.eu

4. Fondazione Bruno Kessler, Italy. bentivo@fbk.eu

5. Fondazione Bruno Kessler, Italy. negri@fbk.eu

6. Fondazione Bruno Kessler, Italy. turchi@fbk.eu

Abstract

Abstract Machine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a relatively new field of inquiry, studies of gender bias in MT still lack cohesion. This advocates for a unified framework to ease future research. To this end, we: i) critically review current conceptualizations of bias in light of theoretical insights from related disciplines, ii) summarize previous analyses aimed at assessing gender bias in MT, iii) discuss the mitigating strategies proposed so far, and iv) point toward potential directions for future work.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference233 articles.

1. Errors and non-errors in english-arabic machine translation of gender-bound constructs in technical texts;Abu-Ayyash;Procedia Computer Science,2017

2. Gender-aware reinflection using linguistically enhanced neural models;Alhafni,2020

3. Linguistically motivated vocabulary reduction for neural machine translation from Turkish to English;Ataman;The Prague Bulletin of Mathematical Linguistics,2017

4. Gender identity and lexical variation in social media;Bamman;Journal of Sociolinguistics,2014

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3