Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs

Author:

Ribeiro Leonardo F. R.1,Zhang Yue2,Gardent Claire3,Gurevych Iryna1

Affiliation:

1. Research Training Group AIPHES and UKP Lab, Technische Universität Darmstadt.

2. School of Engineering, Westlake University.

3. CNRS/LORIA, Nancy, France.

Abstract

Recent graph-to-text models generate text from graph-based data using either global or local aggregation to learn node representations. Global node encoding allows explicit communication between two distant nodes, thereby neglecting graph topology as all nodes are directly connected. In contrast, local node encoding considers the relations between neighbor nodes capturing the graph structure, but it can fail to capture long-range relations. In this work, we gather both encoding strategies, proposing novel neural models that encode an input graph combining both global and local node contexts, in order to learn better contextualized node embeddings. In our experiments, we demonstrate that our approaches lead to significant improvements on two graph-to-text datasets achieving BLEU scores of 18.01 on the AGENDA dataset, and 63.69 on the WebNLG dataset for seen categories, outperforming state-of-the-art models by 3.7 and 3.1 points, respectively. 1

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing text generation from knowledge graphs with cross-structure attention distillation;Engineering Applications of Artificial Intelligence;2024-10

2. Clarified Aggregation and Predictive Modeling (CAPM): High-Interpretability Framework for Inductive Link Prediction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Efficient Incorporation of Knowledge Graph Information for Enhanced Graph-to-Text Generation;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

4. Neural Methods for Data-to-text Generation;ACM Transactions on Intelligent Systems and Technology;2024-05-08

5. KGCDP-T: Interpreting knowledge graphs into text by content ordering and dynamic planning with three-level reconstruction;Knowledge-Based Systems;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3