Neural Methods for Data-to-text Generation

Author:

Sharma Mandar1ORCID,Gogineni Ajay Kumar1ORCID,Ramakrishnan Naren1ORCID

Affiliation:

1. Virginia Tech, USA

Abstract

The neural boom that has sparked natural language processing (NLP) research throughout the last decade has similarly led to significant innovations in data-to-text generation (D2T). This survey offers a consolidated view into the neural D2T paradigm with a structured examination of the approaches, benchmark datasets, and evaluation protocols. This survey draws boundaries separating D2T from the rest of the natural language generation (NLG) landscape, encompassing an up-to-date synthesis of the literature, and highlighting the stages of technological adoption from within and outside the greater NLG umbrella. With this holistic view, we highlight promising avenues for D2T research that not only focus on the design of linguistically capable systems but also systems that exhibit fairness and accountability.

Publisher

Association for Computing Machinery (ACM)

Reference368 articles.

1. Rob Abbott, Brian Ecker, Pranav Anand, and Marilyn Walker. 2016. Internet argument corpus 2.0: An sql schema for dialogic social media and the corpora to go with it. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). 4445–4452.

2. Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. 2021. Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 3554–3565.

3. Shubham Agarwal and Marc Dymetman. 2017. A surprisingly effective out-of-the-box char2char model on the E2E NLG Challenge dataset. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. 158–163.

4. Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and Yoshua Bengio. 2016. A neural knowledge language model. arXiv preprint arXiv:1608.00318 (2016).

5. Jacopo Amidei, Paul Piwek, and Alistair Willis. 2019. The use of rating and Likert scales in Natural Language Generation human evaluation tasks: A review and some recommendations. In Proceedings of the 12th International Conference on Natural Language Generation. 397–402.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3