Evaluating Visual Representations for Topic Understanding and Their Effects on Manually Generated Topic Labels

Author:

Smith Alison1,Lee Tak Yeon1,Poursabzi-Sangdeh Forough2,Boyd-Graber Jordan2,Elmqvist Niklas1,Findlater Leah1

Affiliation:

1. University of Maryland, College Park, MD,

2. University of Colorado, Boulder, CO,

Abstract

Probabilistic topic models are important tools for indexing, summarizing, and analyzing large document collections by their themes. However, promoting end-user understanding of topics remains an open research problem. We compare labels generated by users given four topic visualization techniques—word lists, word lists with bars, word clouds, and network graphs—against each other and against automatically generated labels. Our basis of comparison is participant ratings of how well labels describe documents from the topic. Our study has two phases: a labeling phase where participants label visualized topics and a validation phase where different participants select which labels best describe the topics’ documents. Although all visualizations produce similar quality labels, simple visualizations such as word lists allow participants to quickly understand topics, while complex visualizations take longer but expose multi-word expressions that simpler visualizations obscure. Automatic labels lag behind user-created labels, but our dataset of manually labeled topics highlights linguistic patterns (e.g., hypernyms, phrases) that can be used to improve automatic topic labeling algorithms.

Publisher

MIT Press - Journals

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Return to play of young and adult professional athletes after COVID-19: A scoping review;Journal of Exercise Science & Fitness;2024-07

2. Anther: Cross-Pollinating Communities of Practice via Video Tutorials;Designing Interactive Systems Conference;2024-07

3. A Review of Stability in Topic Modeling: Metrics for Assessing and Techniques for Improving Stability;ACM Computing Surveys;2023-11-27

4. Autoencoder and Incremental Clustering-Enabled Anomaly Detection;Electronics;2023-04-24

5. One Rating to Rule Them All?;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3