Autoencoder and Incremental Clustering-Enabled Anomaly Detection

Author:

Connelly Andrew Charles1ORCID,Zaidi Syed Ali Raza1ORCID,McLernon Des1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

Many machine-learning-enabled approaches towards anomaly detection depend on the availability of vast training data. Our data are formed from power readings of cycles from domestic appliances, such as dishwashers or washing machines, and contain no known examples of anomalous behaviour. Moreover, we are limited to the machine’s voltage, amperage, and current readings, drawn from a retrofitted power outlet in 60-s samples. No rich sensor data or previous insights are available as a training basis, limiting our ability to leverage the existing work. We design a system to monitor the behaviour of electrical appliances. This system requires special consideration as different power cycles from the same machine can exhibit different behaviours, and it accounts for this by clustering unseen cycle patterns into siloed training datasets and corresponding learned parameters. They are then passed in real-time to an autoencoder ensemble for reconstruction-based anomaly detection, using the error in reconstruction as a means to flag anomalous points in time. The system correctly identifies and trains appropriate cycle clusters of data streams on a real-world machine dataset injected with stochastic, proportionate anomalies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-supervised noise-resilient anomaly detection with feature autoencoder;Knowledge-Based Systems;2024-11

2. Bayes-Optimized Adaptive Growing Neural Gas Method for Online Anomaly Detection of Industrial Streaming Data;Applied Sciences;2024-05-13

3. Anomaly detection framework for IoT-enabled appliances using machine learning;Cluster Computing;2024-04-30

4. Abnormal Operations Detection of Residential Electric Appliances using Non-Intrusive Load Monitoring;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

5. A Dynamic Printing Equipment Production Status Anomaly Detection Model;Proceedings of the 2023 International Conference on Electronics, Computers and Communication Technology;2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3