Fully Character-Level Neural Machine Translation without Explicit Segmentation

Author:

Lee Jason1,Cho Kyunghyun2,Hofmann Thomas1

Affiliation:

1. ETH Zürich,

2. New York University,

Abstract

Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Our character-to-character model outperforms a recently proposed baseline with a subword-level encoder on WMT’15 DE-EN and CS-EN, and gives comparable performance on FI-EN and RU-EN. We then demonstrate that it is possible to share a single character-level encoder across multiple languages by training a model on a many-to-one translation task. In this multilingual setting, the character-level encoder significantly outperforms the subword-level encoder on all the language pairs. We observe that on CS-EN, FI-EN and RU-EN, the quality of the multilingual character-level translation even surpasses the models specifically trained on that language pair alone, both in terms of the BLEU score and human judgment.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Event causality extraction through external event knowledge learning and polyhedral word embedding;Machine Learning;2024-01-22

2. Thai-English Neural Machine Translation Method with Local and Global Syllable Feature;2023 International Conference on Asian Language Processing (IALP);2023-11-18

3. Machine Translation for Historical Research: A case study of Aramaic-Ancient Hebrew Translations;Journal on Computing and Cultural Heritage;2023-10-16

4. Automatic software vulnerability assessment by extracting vulnerability elements;Journal of Systems and Software;2023-10

5. Morpheme-Based Neural Machine Translation Models for Low-Resource Fusion Languages;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3