Machine Translation for Historical Research: A case study of Aramaic-Ancient Hebrew Translations

Author:

Liebeskind Chaya1,Liebeskind Shmuel2,Bouhnik Dan1

Affiliation:

1. Department of Computer Science, Jerusalem College of Technology, Israel

2. Department of Data Mining, Jerusalem College of Technology, Israel

Abstract

In this article, by the ability to translate Aramaic to another spoken languages, we investigated Machine Translation (MT) in a cultural heritage domain for two primary purposes: evaluating the quality of ancient translations and preserving Aramaic (an endangered language). First, we detailed the construction of a publicly available Biblical parallel Aramaic-Hebrew corpus based on two ancient (early 2 nd - late 4 th century) Hebrew–Aramaic translations: Targum Onkelus and Targum Jonathan. Then using the Statistical Machine Translation (SMT) approach, which in our use-case significantly outperforms the Neural Machine Translation (NMT), we validated the excepted high quality of the translations. The trained model failed to translate Aramaic texts of other dialects. However, when we trained the same SMT model on another Aramaic-Hebrew corpus of a different dialect (Zohar - 13 th century) a very high translation score was achieved. We examined an additional important cultural heritage source of Aramaic texts, the Babylonian Talmud (early 3 rd - late 5 th century). Since we do not have a parallel Aramaic-Hebrew corpus of the Talmud, we used the model trained on the Bible corpus for translation. We performed an analysis of the results and suggest some potential promising future research.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Information Systems,Conservation

Reference137 articles.

1. David Ifeoluwa Adelani Dana Ruiter Jesujoba O Alabi Damilola Adebonojo Adesina Ayeni Mofetoluwa Adeyemi Ayodele Awokoya and Cristina España-Bonet. 2021. MENYO-20k: A multi-domain english-yorubá corpus for machine translation and domain adaptation. CoRR abs/2103.08647(2021). David Ifeoluwa Adelani Dana Ruiter Jesujoba O Alabi Damilola Adebonojo Adesina Ayeni Mofetoluwa Adeyemi Ayodele Awokoya and Cristina España-Bonet. 2021. MENYO-20k: A multi-domain english-yorubá corpus for machine translation and domain adaptation. CoRR abs/2103.08647(2021).

2. Orevaoghene Ahia Julia Kreutzer and Sara Hooker. 2021. The low-resource double bind: An empirical study of pruning for low-resource machine translation. arXiv preprint arXiv:2110.03036(2021). Orevaoghene Ahia Julia Kreutzer and Sara Hooker. 2021. The low-resource double bind: An empirical study of pruning for low-resource machine translation. arXiv preprint arXiv:2110.03036(2021).

3. Alham Fikri Aji , Nikolay Bogoychev , Kenneth Heafield , and Rico Sennrich . 2020 . In Neural Machine Translation, What Does Transfer Learning Transfer? . In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 7701–7710 . https://doi.org/10.18653/v1/2020.acl-main.688 10.18653/v1 Alham Fikri Aji, Nikolay Bogoychev, Kenneth Heafield, and Rico Sennrich. 2020. In Neural Machine Translation, What Does Transfer Learning Transfer?. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 7701–7710. https://doi.org/10.18653/v1/2020.acl-main.688

4. Philip  S Alexander . 1992 . ”Targum, Targumim”. Anchor Bible Dictionary 6 (1992), 320 – 331 . Philip S Alexander. 1992. ”Targum, Targumim”. Anchor Bible Dictionary 6 (1992), 320–31.

5. David Alvarez-Melis and Tommi Jaakkola . 2017 . A causal framework for explaining the predictions of black-box sequence-to-sequence models . In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 412–421 . David Alvarez-Melis and Tommi Jaakkola. 2017. A causal framework for explaining the predictions of black-box sequence-to-sequence models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 412–421.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3