Affiliation:
1. Department of Computing, Macquarie University, Sydney, Australia,
Abstract
We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5% and 84.0% accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献