VILA: Improving Structured Content Extraction from Scientific PDFs Using Visual Layout Groups

Author:

Shen Zejiang1,Lo Kyle2,Wang Lucy Lu3,Kuehl Bailey4,Weld Daniel S.56,Downey Doug57

Affiliation:

1. Allen Institute for AI, USA. shannons@allenai.org

2. Allen Institute for AI, USA. kylel@allenai.org

3. Allen Institute for AI, USA. lucyw@allenai.org

4. Allen Institute for AI, USA. baileyk@allenai.org

5. Allen Institute for AI, USA

6. University of Washington, USA. danw@allenai.org

7. Northwestern University, USA. dougd@allenai.org

Abstract

Abstract Accurately extracting structured content from PDFs is a critical first step for NLP over scientific papers. Recent work has improved extraction accuracy by incorporating elementary layout information, for example, each token’s 2D position on the page, into language model pretraining. We introduce new methods that explicitly model VIsual LAyout (VILA) groups, that is, text lines or text blocks, to further improve performance. In our I-VILA approach, we show that simply inserting special tokens denoting layout group boundaries into model inputs can lead to a 1.9% Macro F1 improvement in token classification. In the H-VILA approach, we show that hierarchical encoding of layout-groups can result in up to 47% inference time reduction with less than 0.8% Macro F1 loss. Unlike prior layout-aware approaches, our methods do not require expensive additional pretraining, only fine-tuning, which we show can reduce training cost by up to 95%. Experiments are conducted on a newly curated evaluation suite, S2-VLUE, that unifies existing automatically labeled datasets and includes a new dataset of manual annotations covering diverse papers from 19 scientific disciplines. Pre-trained weights, benchmark datasets, and source code are available at https://github.com/allenai/VILA.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference39 articles.

1. Grobid,2008–2021

2. ICDAR2021 competition on mathematical formula detection,2021

3. Construction of the literature graph in semantic scholar;Ammar,2018

4. Segatron: Segment-aware transformer for language modeling and understanding;He,2021

5. SciBERT: A pretrained language model for scientific text;Iz,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3