Modeling Orienting Behavior and Its Disorders with “Ecological” Neural Networks

Author:

Di Ferdinando Andrea1,Parisi Domenico1,Bartolomeo Paolo2

Affiliation:

1. 1National Research Council, Italy

2. 2Université Pierre et Marie Curie Paris 6, France

Abstract

Abstract Computational modeling is a useful tool for spelling out hypotheses in cognitive neuroscience and testing their predictions in artificial systems. Here we describe a series of simulations involving neural networks that learned to perform their task by self-organizing their internal connections. The networks controlled artificial agents with an orienting eye and an arm. Agents saw objects with various shapes and locations and learned to press a key appropriate to their shape. The results showed the following: (1) Despite being able to see the entire visual scene without moving their eye, agents learned to orient their eye toward a peripherally presented object. (2) Neural networks whose hidden layers were previously partitioned into units dedicated to eye orienting and units dedicated to arm movements learned the identification task faster and more accurately than did nonmodular networks. (3) Nonetheless, even nonmodular networks developed a similar functional segregation through self-organization of their hidden layer. (4) After partial disconnection of the hidden layer from the input layer, the lesioned agents continued to respond accurately to single stimuli, wherever they occurred, but on double simultaneous stimulation they oriented toward and responded only to the right-sided stimulus, thus simulating extinction/neglect. These results stress the generality of the advantages provided by orienting processes. Hard-wired modularity, reminiscent of the distinct cortical visual streams in the primate brain, provided further evolutionary advantages. Finally, disconnection is likely to be a mechanism of primary importance in the pathogenesis of neglect and extinction symptoms, consistent with recent evidence from animal studies and brain-damaged patients.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3