Pseudoneglect in visual search: Behavioral evidence and connectional constraints in simulated neural circuitry

Author:

Gigliotta Onofrio,Malkinson Tal Seidel,Miglino Orazio,Bartolomeo PaoloORCID

Abstract

AbstractMost people tend to bisect horizontal lines slightly to the left of their true center (pseudoneglect), and start visual search from left-sided items. This physiological leftward spatial bias may depend on hemispheric asymmetries in the organization of attentional networks, but the precise mechanisms are unknown. Here we modeled relevant aspects of the ventral and dorsal attentional networks (VAN and DAN) of the human brain. First, we demonstrated pseudoneglect in visual search in 101 right-handed psychology students. Participants consistently tended to start the task from a left-sided item, thus showing pseudoneglect. Second, we trained populations of simulated neurorobots to perform a similar task, by using a genetic algorithm. The neurorobots’ behavior was controlled by artificial neural networks, which simulated the human VAN and DAN in the two brain hemispheres. Neurorobots differed in the connectional constraints that were applied to the anatomy and function of the attention networks. Results indicated that (1) neurorobots provided with a biologically plausible hemispheric asymmetry of the VAN-DAN connections, as well as with inter-hemispheric inhibition, displayed the best match with human data; however, (2) anatomical asymmetry per se was not sufficient to generate pseudoneglect; in addition, the VAN must have an excitatory influence on the ipsilateral DAN; (3) neurorobots provided with bilateral competence in the VAN but without inter-hemispheric inhibition failed to display pseudoneglect. These findings provide a proof of concept of the causal link between connectional asymmetries and pseudoneglect, and specify important biological constraints that result in physiological asymmetries of human behavior.Significance statementMost of us start our exploration of the environment from the left side. Here we demonstrated this tendency in undergraduate students, and trained artificial agents (neurorobots) to perform a similar visual search task. The neurorobots’ behavior was controlled by artificial neural networks, inspired by the human fronto-parietal attentional system. In seven distinct populations of neurorobots, different constraints were applied on the network connections within and between the brain hemispheres. Only one of the artificial populations behaved in a similar way to the human participants. The connectional constraints applied to this population included known characteristics of the human fronto-parietal networks, but had also additional properties not previously described. Thus, our findings specify biological constraints that induce physiological asymmetries of human behavior.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3