A Simple Derivation of a Bound on the Perceptron Margin Using Singular Value Decomposition

Author:

Barak Omri1,Rigotti Mattia2

Affiliation:

1. Center for Theoretical Neuroscience, Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, U.S.A.

2. Center for Theoretical Neuroscience, Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, U.S.A., and Center for Neural Science, New York University, NY 10003, U.S.A.

Abstract

The perceptron is a simple supervised algorithm to train a linear classifier that has been analyzed and used extensively. The classifier separates the data into two groups using a decision hyperplane, with the margin between the data and the hyperplane determining the classifier's ability to generalize and its robustness to input noise. Exact results for the maximal size of the separating margin are known for specific input distributions, and bounds exist for arbitrary distributions, but both rely on lengthy statistical mechanics calculations carried out in the limit of infinite input size. Here we present a short analysis of perceptron classification using singular value decomposition. We provide a simple derivation of a lower bound on the margin and an explicit formula for the perceptron weights that converges to the optimal result for large separating margins.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3