Towards Workflows for the Use of AI Foundation Models in Visual Inspection Applications

Author:

Rigotti Mattia1,Antognini Diego1,Assaf Roy1,Bakirci Kagan1,Frick Thomas1,Giurgiu Ioana1,Janoušková Klára1,Janicki Filip1,Jubran Husam1,Malossi Cristiano1,Meterez Alexandru1,Scheidegger Florian

Affiliation:

1. IBM Research AI Zurich Switzerland

Abstract

AbstractThe latest successes in AI have been largely driven by a paradigm known as Foundation Models (FMs), large Neural Networks pretrained on massive datasets that thereby acquire impressive transfer learning capabilities to adapt to new tasks. The emerging properties of FMs have unlocked novel tantalizing applications for instance enabling the generation of fluent text and realistic images from text descriptions. The impact of FMs on technical domains like civil engineering is however still in its infancy, owing to a gap between research development and application use cases. This paper aims to help bridge this gap and promote adoption among technical practitioners, specifically in visual inspection applications for civil engineering. For that we analyze the requirements in terms of data availability making particular use cases amenable to the pretraining/fine‐tuning paradigm of FMs, i.e. situations where labeled data is scarce or costly, but unlabeled data is abundant. We then illustrate proof‐of‐concepts workflows using FMs, in visual inspection applications. We hope that our contribution will mark the start of conversations between AI researchers and civil engineers on the potential of FMs to accelerate workflows supporting vision tasks for maintenance inspections and decisions.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference50 articles.

1. Deep learning

2. T. B.Brownet al. “Language Models are Few‐Shot Learners.” arXiv Jul.2020. doi:10.48550/arXiv.2005.14165.

3. A.Rameshet al. “Zero‐Shot Text‐to‐Image Generation.” arXiv Feb.2021. doi:10.48550/arXiv.2102.12092.

4. C.Sahariaet al. “Photorealistic Text‐to‐Image Diffusion Models with Deep Language Understanding.” arXiv May2022. doi:10.48550/arXiv.2205.11487.

5. R.Rombach A.Blattmann D.Lorenz P.Esser andB.Ommer “High‐Resolution Image Synthesis with Latent Diffusion Models.” arXiv Apr.2022. doi:10.48550/arXiv.2112.10752.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3