Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces

Author:

Vidaurre Carmen1,Sannelli Claudia1,Müller Klaus-Robert2,Blankertz Benjamin3

Affiliation:

1. Machine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany

2. Machine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany, and Bernstein Focus: Neurotechnology, Berlin 10115, Germany

3. Machine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany; Bernstein Focus: Neurotechnology, Berlin 10115, Germany; and Fraunhofer FIRST (IDA), Berlin 12489, Germany

Abstract

Brain-computer interfaces (BCIs) allow users to control a computer application by brain activity as acquired (e.g., by EEG). In our classic machine learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However, not all BCI users are able to perform sufficiently well during feedback operation. In fact, a nonnegligible portion of participants (estimated 15%–30%) cannot control the system (a BCI illiteracy problem, generic to all motor-imagery-based BCIs). We hypothesize that one main difficulty for a BCI user is the transition from offline calibration to online feedback. In this work, we investigate adaptive machine learning methods to eliminate offline calibration and analyze the performance of 11 volunteers in a BCI based on the modulation of sensorimotor rhythms. We present an adaptation scheme that individually guides the user. It starts with a subject-independent classifier that evolves to a subject-optimized state-of-the-art classifier within one session while the user interacts continuously. These initial runs use supervised techniques for robust coadaptive learning of user and machine. Subsequent runs use unsupervised adaptation to track the features’ drift during the session and provide an unbiased measure of BCI performance. Using this approach, without any offline calibration, six users, including one novice, obtained good performance after 3 to 6 minutes of adaptation. More important, this novel guided learning also allows participants with BCI illiteracy to gain significant control with the BCI in less than 60 minutes. In addition, one volunteer without sensorimotor idle rhythm peak at the beginning of the BCI experiment developed it during the course of the session and used voluntary modulation of its amplitude to control the feedback application.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3