Analysis of Minimal Channel Electroencephalography for Wearable Brain–Computer Interface

Author:

Suwannarat Arpa1ORCID,Pan-ngum Setha2ORCID,Israsena Pasin1ORCID

Affiliation:

1. National Electronics and Computer Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

2. Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Electroencephalography (EEG)-based brain—computer interface (BCI) is a non-invasive technology with potential in various healthcare applications, including stroke rehabilitation and neuro-feedback training. These applications typically require multi-channel EEG. However, setting up a multi-channel EEG headset is time-consuming, potentially resulting in patient reluctance to use the system despite its potential benefits. Therefore, we investigated the appropriate number of electrodes required for a successful BCI application in wearable devices using various numbers of EEG channels. EEG multi-frequency features were extracted using the “filter bank” feature extraction technique. A support vector machine (SVM) was used to classify a left/right-hand opening/closing motor imagery (MI) task. Nine electrodes around the center of the scalp (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4) provided high classification accuracy with a moderate setup time; hence, this system was selected as the minimal number of required channels. Spherical spline interpolation (SSI) was also applied to investigate the feasibility of generating EEG signals from limited channels on an EEG headset. We found classification accuracies of interpolated groups only, and combined interpolated and collected groups were significantly lower than the measured groups. The results indicate that SSI may not provide additional EEG data to improve classification accuracy of the collected minimal channels. The conclusion is that other techniques could be explored or a sufficient number of EEG channels must be collected without relying on generated data. Our proposed method, which uses a filter bank feature, session-dependent training, and the exploration of many groups of EEG channels, offers the possibility of developing a successful BCI application using minimal channels on an EEG device.

Funder

90th Anniversary of Chulalongkorn University, Ratchadapisek Sompote Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3