Efficient Training of Convolutional Deep Belief Networks in the Frequency Domain for Application to High-Resolution 2D and 3D Images

Author:

Brosch Tom1,Tam Roger2

Affiliation:

1. MS/MRI Research Group, Vancouver, BC V6T 2B5, Canada, and Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

2. MS/MRI Research Group, Vancouver, BC V6T 2B5, Canada, and Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada

Abstract

Deep learning has traditionally been computationally expensive, and advances in training methods have been the prerequisite for improving its efficiency in order to expand its application to a variety of image classification problems. In this letter, we address the problem of efficient training of convolutional deep belief networks by learning the weights in the frequency domain, which eliminates the time-consuming calculation of convolutions. An essential consideration in the design of the algorithm is to minimize the number of transformations to and from frequency space. We have evaluated the running time improvements using two standard benchmark data sets, showing a speed-up of up to 8 times on 2D images and up to 200 times on 3D volumes. Our training algorithm makes training of convolutional deep belief networks on 3D medical images with a resolution of up to 128 × 128 × 128 voxels practical, which opens new directions for using deep learning for medical image analysis.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3