EEGminer: discovering interpretable features of brain activity with learnable filters

Author:

Ludwig SiegfriedORCID,Bakas StylianosORCID,Adamos Dimitrios AORCID,Laskaris NikolaosORCID,Panagakis YannisORCID,Zafeiriou StefanosORCID

Abstract

Abstract Objective. The patterns of brain activity associated with different brain processes can be used to identify different brain states and make behavioural predictions. However, the relevant features are not readily apparent and accessible. Our aim is to design a system for learning informative latent representations from multichannel recordings of ongoing EEG activity. Approach: We propose a novel differentiable decoding pipeline consisting of learnable filters and a pre-determined feature extraction module. Specifically, we introduce filters parameterized by generalized Gaussian functions that offer a smooth derivative for stable end-to-end model training and allow for learning interpretable features. For the feature module, we use signal magnitude and functional connectivity estimates. Main results. We demonstrate the utility of our model on a new EEG dataset of unprecedented size (i.e. 721 subjects), where we identify consistent trends of music perception and related individual differences. Furthermore, we train and apply our model in two additional datasets, specifically for emotion recognition on SEED and workload classification on simultaneous task EEG workload. The discovered features align well with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening. This agrees with the specialisation of the temporal lobes regarding music perception proposed in the literature. Significance. The proposed method offers strong interpretability of learned features while reaching similar levels of accuracy achieved by black box deep learning models. This improved trustworthiness may promote the use of deep learning models in real world applications. The model code is available at https://github.com/SMLudwig/EEGminer/.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3