Causal Discovery via Reproducing Kernel Hilbert Space Embeddings

Author:

Chen Zhitang1,Zhang Kun2,Chan Laiwan3,Schölkopf Bernhard2

Affiliation:

1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, and Max Planck Institute for Intelligent Systems, Tübingen 72076, Germany

2. Max Planck Institute for Intelligent Systems, Tübingen 72076, Germany

3. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

Abstract

Causal discovery via the asymmetry between the cause and the effect has proved to be a promising way to infer the causal direction from observations. The basic idea is to assume that the mechanism generating the cause distribution p(x) and that generating the conditional distribution p(y|x) correspond to two independent natural processes and thus p(x) and p(y|x) fulfill some sort of independence condition. However, in many situations, the independence condition does not hold for the anticausal direction; if we consider p(x, y) as generated via p(y)p(x|y), then there are usually some contrived mutual adjustments between p(y) and p(x|y). This kind of asymmetry can be exploited to identify the causal direction. Based on this postulate, in this letter, we define an uncorrelatedness criterion between p(x) and p(y|x) and, based on this uncorrelatedness, show asymmetry between the cause and the effect in terms that a certain complexity metric on p(x) and p(y|x) is less than the complexity metric on p(y) and p(x|y). We propose a Hilbert space embedding-based method EMD (an abbreviation for EMbeDding) to calculate the complexity metric and show that this method preserves the relative magnitude of the complexity metric. Based on the complexity metric, we propose an efficient kernel-based algorithm for causal discovery. The contribution of this letter is threefold. It allows a general transformation from the cause to the effect involving the noise effect and is applicable to both one-dimensional and high-dimensional data. Furthermore it can be used to infer the causal ordering for multiple variables. Extensive experiments on simulated and real-world data are conducted to show the effectiveness of the proposed method.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coefficient-based regularized distribution regression;Journal of Approximation Theory;2024-01

2. Network comparison via encoding, decoding, and causality;Physical Review Research;2023-08-24

3. Learning latent functions for causal discovery;Machine Learning: Science and Technology;2023-07-12

4. GPF-Net: Graph-Polarized Fusion Network for Hyperspectral Image Classification;IEEE Transactions on Geoscience and Remote Sensing;2023

5. Description length guided nonlinear unified Granger causality analysis;Network Neuroscience;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3