Description length guided nonlinear unified Granger causality analysis

Author:

Li Fei1,Lin Qiang1,Zhao Xiaohu2,Hu Zhenghui1

Affiliation:

1. Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, China

2. Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Abstract

Abstract Most Granger causality analysis (GCA) methods still remain a two-stage scheme guided by different mathematical theories; both can actually be viewed as the same generalized model selection issues. Adhering to Occam’s razor, we present a unified GCA (uGCA) based on the minimum description length principle. In this research, considering the common existence of nonlinearity in functional brain networks, we incorporated the nonlinear modeling procedure into the proposed uGCA method, in which an approximate representation of Taylor’s expansion was adopted. Through synthetic data experiments, we revealed that nonlinear uGCA was obviously superior to its linear representation and the conventional GCA. Meanwhile, the nonlinear characteristics of high-order terms and cross-terms would be successively drowned out as noise levels increased. Then, in real fMRI data involving mental arithmetic tasks, we further illustrated that these nonlinear characteristics in fMRI data may indeed be drowned out at a high noise level, and hence a linear causal analysis procedure may be sufficient. Next, involving autism spectrum disorder patients data, compared with conventional GCA, the network property of causal connections obtained by uGCA methods appeared to be more consistent with clinical symptoms.

Funder

National Key Research and Development Program of China

Public Projects of Science Technology Department of Zhejiang Province

Science and Technology Commission of Shanghai Municipality

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3