A Virtual Environment Testbed for Training Laparoscopic Surgical Skills

Author:

Tendick Frank1,Downes Michael2,Goktekin Tolga2,Cavusoglu Murat Cenk2,Feygin David2,Wu Xunlei2,Eyal Roy2,Hegarty Mary3,Way Lawrence W.4

Affiliation:

1. Department of Surgery, University of California San Francisco San Francisco, CA 94143-0475,

2. Departments of Electrical Engineering and Computer Sciences, Mechanical Engineering, and Bioengineering, University of California, Berkeley, CA 94720

3. Department of Psychology, University of California, Santa Barbara, CA 93106

4. Department of Surgery, University of California, San Francisco, CA 94143

Abstract

With the introduction of minimally invasive techniques, surgeons must learn skills and procedures that are radically different from traditional open surgery. Traditional methods of surgical training that were adequate when techniques and instrumentation changed relatively slowly may not be as efficient or effective in training substantially new procedures. Virtual environments are a promising new medium for training. This paper describes a testbed developed at the San Francisco, Berkeley, and Santa Barbara campuses of the University of California for research in understanding, assessing, and training surgical skills. The testbed includes virtual environments for training perceptual motor skills, spatial skills, and critical steps of surgical procedures. Novel technical elements of the testbed include a four-DOF haptic interface, a fast collision detection algorithm for detecting contact between rigid and deformable objects, and parallel processing of physical modeling and rendering. The major technical challenge in surgical simulation to be investigated using the testbed is the development of accurate, real-time methods for modeling deformable tissue behavior. Several simulations have been implemented in the testbed, including environments for assessing performance of basic perceptual motor skills, training the use of an angled laparoscope, and teaching critical steps of the cholecystectomy, a common laparoscopic procedure. The major challenges of extending and integrating these tools for training are discussed.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3