Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents

Author:

Potter Mitchell A.1,Jong Kenneth A. De2

Affiliation:

1. Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC 20375, USA

2. Computer Science Department George Mason University Fairfax, VA 22030, USA

Abstract

To successfully apply evolutionary algorithms to the solution of increasingly complex problems, we must develop effective techniques for evolving solutions in the form of interacting coadapted subcomponents. One of the major difficulties is finding computational extensions to our current evolutionary paradigms that will enable such subcomponents to “emerge” rather than being hand designed. In this paper, we describe an architecture for evolving such subcomponents as a collection of cooperating species. Given a simple string- matching task, we show that evolutionary pressure to increase the overall fitness of the ecosystem can provide the needed stimulus for the emergence of an appropriate number of interdependent subcomponents that cover multiple niches, evolve to an appropriate level of generality, and adapt as the number and roles of their fellow subcomponents change over time. We then explore these issues within the context of a more complicated domain through a case study involving the evolution of artificial neural networks.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3