Search-Intensive Concept Induction

Author:

Giordana Attilio1,Neri Filippo1

Affiliation:

1. Università di Torino Dipartimento di Informatica Corso Svizzera 185 10149 Torino, Italy

Abstract

This paper describes REGAL, a distributed genetic algorithm-based system, designed for learning first-order logic concept descriptions from examples. The system is a hybrid of the Pittsburgh and the Michigan approaches, as the population constitutes a redundant set of partial concept descriptions, each evolved separately. In order to increase effectiveness, REGAL is specifically tailored to the concept learning task; hence, REGAL is task-dependent, but, on the other hand, domain-independent. The system proved particularly robust with respect to parameter setting across a variety of different application domains. REGAL is based on a selection operator, called Universal Suffrage operator, provably allowing the population to asymptotically converge, on the average, to an equilibrium state in which several species coexist. The system is presented in both a serial and a parallel version, and a new distributed computational model is proposed and discussed. The system has been tested on a simple artificial domain for the sake of illustration, and on several complex real-world and artificial domains in order to show its power and to analyze its behavior under various conditions. The results obtained so far suggest that genetic search may be a valuable alternative to logic-based approaches to learning concepts, when no (or little) a priori knowledge is available and a very large hypothesis space has to be explored.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fault data analysis method for the landing gear based on association rule mining;Ninth International Conference on Mechanical Engineering, Materials, and Automation Technology (MMEAT 2023);2023-10-25

2. Widening: using parallel resources to improve model quality;Data Mining and Knowledge Discovery;2021-04-09

3. Visualization Technique for Intrusion Detection;Research Anthology on Combating Denial-of-Service Attacks;2021

4. Big Data Modeling Approaches for Engineering Applications;Nonlinear Approaches in Engineering Applications;2019-08-07

5. Bee for mining (B4M) – A novel rule discovery method using the Bees algorithm with quality-weight and coverage-weight;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2019-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3