Efficient Linkage Discovery by Limited Probing

Author:

Heckendorn Robert B.1,Wright Alden H.2

Affiliation:

1. Department of Computer Science, University of Idaho, Moscow, ID 83844-1010, USA,

2. Department of Computer Science, University of Montana, Missoula, MT 59812, USA,

Abstract

This paper addresses the problem of discovering the structure of a fitness function from binary strings to the reals under the assumption of bounded epistasis. Two loci (string positions) are epistatically linked if the effect of changing the allele (value) at one locus depends on the allele at the other locus. Similarly, a group of loci are epistatically linked if the effect of changing the allele at one locus depends on the alleles at all other loci of the group. Under the assumption that the size of such groups of loci are bounded, and assuming that the function is given only as a “black box function”, this paper presents and analyzes a randomized algorithm that finds the complete epistatic structure of the function in the form of the Walsh coefficients of the function.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iterated Local Search with Linkage Learning;ACM Transactions on Evolutionary Learning and Optimization;2024-06-08

2. A Novel Approach to Designing Surrogate-assisted Genetic Algorithms by Combining Efficient Learning of Walsh Coefficients and Dependencies;ACM Transactions on Evolutionary Learning and Optimization;2021-07-23

3. A General Framework Based on Walsh Decomposition for Combinatorial Optimization Problems;2021 IEEE Congress on Evolutionary Computation (CEC);2021-06-28

4. Quadratization of gray coded representations, long path problems and needle functions;Proceedings of the Genetic and Evolutionary Computation Conference;2021-06-26

5. Learning and Searching Pseudo-Boolean Surrogate Functions from Small Samples;Evolutionary Computation;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3