A Novel Approach to Designing Surrogate-assisted Genetic Algorithms by Combining Efficient Learning of Walsh Coefficients and Dependencies

Author:

Dushatskiy Arkadiy1,Alderliesten Tanja2,Bosman Peter A. N.3

Affiliation:

1. Centrum Wiskunde & Informatica, the Netherlands

2. Leiden University Medical Center, the Netherlands

3. Centrum Wiskunde & Informatica and TU Delft

Abstract

Surrogate-assisted evolutionary algorithms have the potential to be of high value for real-world optimization problems when fitness evaluations are expensive, limiting the number of evaluations that can be performed. In this article, we consider the domain of pseudo-Boolean functions in a black-box setting. Moreover, instead of using a surrogate model as an approximation of a fitness function, we propose to precisely learn the coefficients of the Walsh decomposition of a fitness function and use the Walsh decomposition as a surrogate. If the coefficients are learned correctly, then the Walsh decomposition values perfectly match with the fitness function, and, thus, the optimal solution to the problem can be found by optimizing the surrogate without any additional evaluations of the original fitness function. It is known that the Walsh coefficients can be efficiently learned for pseudo-Boolean functions with k -bounded epistasis and known problem structure. We propose to learn dependencies between variables first and, therefore, substantially reduce the number of Walsh coefficients to be calculated. After the accurate Walsh decomposition is obtained, the surrogate model is optimized using GOMEA, which is considered to be a state-of-the-art binary optimization algorithm. We compare the proposed approach with standard GOMEA and two other Walsh decomposition-based algorithms. The benchmark functions in the experiments are well-known trap functions, NK-landscapes, MaxCut, and MAX3SAT problems. The experimental results demonstrate that the proposed approach is scalable at the supposed complexity of O (ℓ log ℓ) function evaluations when the number of subfunctions is O (ℓ) and all subfunctions are k -bounded, outperforming all considered algorithms.

Publisher

Association for Computing Machinery (ACM)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3