Affiliation:
1. Faculty of Computing, Engineering and Mathematical Sciences, University of the West of England, Bristol BS16 1QY, UK
Abstract
Learning classifier systems traditionally use genetic algorithms to facilitate rule discovery, where rule fitness is payoff based. Current research has shifted to the use of accuracy-based fitness. This paper re-examines the use of a particular payoff-based learning classifier system—ZCS. By using simple difference equation models of ZCS, we show that this system is capable of optimal performance subject to appropriate parameter settings. This is demonstrated for both single- and multistep tasks. Optimal performance of ZCS in well-known, multistep maze tasks is then presented to support the findings from the models.
Subject
Computational Mathematics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献