Implicit Niching in a Learning Classifier System: Nature's Way

Author:

Horn Jeffrey1,Goldberg David E.2,Deb Kalyanmoy3

Affiliation:

1. Department of Computer Science and the Illinois Genetic Algorithms Laboratory University of Illinois at Urbana-Champaign 117 Transportation Building 104 South Mathews Avenue Urbana, IL 61801-2996

2. Department of General Engineering and the Illinois Genetic Algorithms Laboratory University of Illinois at Urbana-Champaign 117 Transportation Building 104 South Mathews Avenue Urbana, IL 61801-2996

3. Department of Mechanical Engineering Indian Institute of Technology Kanpur, UP PIN 208016, India

Abstract

We approach the difficult task of analyzing the complex behavior of even the simplest learning classifier system (LCS) by isolating one crucial subfunction in the LCS learning algorithm: covering through niching. The LCS must maintain a population of diverse rules that together solve a problem (e.g., classify examples). To maintain a diverse population while applying the GAs selection operator, the LCS must incorporate some kind of niching mechanism. The natural way to accomplish niching in an LCS is to force competing rules to share resources (i.e., rewards). This implicit LCS fitness sharing is similar to the explicit fitness sharing used in many niched GAs. Indeed, the LCS implicit sharing algorithm can be mapped onto explicit fitness sharing with a one-to-one correspondence between algorithm components. This mapping is important because several studies of explicit fitness sharing, and of niching in GAs generally, have produced key insights and analytical tools for understanding the interaction of the niching and selection forces. We can now bring those results to bear in understanding the fundamental type of cooperation (a.k.a. weak cooperation) that an LCS must promote.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 574 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3