Abstract
Multi-objective evolutionary algorithms (MOEAs) have been successfully applied for the numerical treatment of multi-objective optimization problems (MOP) during the last three decades. One important task within MOEAs is the archiving (or selection) of the computed candidate solutions, since one can expect that an MOP has infinitely many solutions. We present and analyze in this work ArchiveUpdateHD, which is a bounded archiver that aims for Hausdorff approximations of the Pareto front. We show that the sequence of archives generated by ArchiveUpdateHD yields under certain (mild) assumptions with a probability of one after finitely many steps a Δ+-approximation of the Pareto front, where the value Δ+ is computed by the archiver within the run of the algorithm without any prior knowledge of the Pareto front. The knowledge of this value is of great importance for the decision maker, since it is a measure for the “completeness” of the Pareto front approximation. Numerical results on several well-known academic test problems as well as the usage of ArchiveUpdateHD as an external archiver within three state-of-the-art MOEAs indicate the benefit of the novel strategy.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Reference86 articles.
1. Combining Convergence and Diversity in Evolutionary Multiobjective Optimization
2. Multi-Objective Optimization Using Evolutionary Algorithms;Deb,2001
3. Real-World Applications of Multiobjective Optimization;Stewart,2008
4. Cell Mapping Methods—Algorithmic Approaches and Applications;Sun,2019
5. Data-Driven Bayesian Network Learning: A Bi-Objective Approach to Address the Bias-Variance Decomposition
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献