Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression

Author:

Brandman David M.1,Burkhart Michael C.2,Kelemen Jessica3,Franco Brian3,Harrison Matthew T.2,Hochberg Leigh R.4

Affiliation:

1. Neuroscience Graduate Program, Department of Neuroscience, Carney Institute for Brain Science, and School of Engineering, Brown University, Providence, RI 02912, U.S.A.; and Department of Surgery (Neurosurgery), Dalhousie University, Halifax, NS B3H 347 Canada

2. Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.

3. Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.

4. Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02908; Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI 02912; Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114; and Neurology, Harvard Medical School, Boston, MA 02115, U.S.A.

Abstract

Intracortical brain computer interfaces can enable individuals with paralysis to control external devices through voluntarily modulated brain activity. Decoding quality has been previously shown to degrade with signal nonstationarities—specifically, the changes in the statistics of the data between training and testing data sets. This includes changes to the neural tuning profiles and baseline shifts in firing rates of recorded neurons, as well as nonphysiological noise. While progress has been made toward providing long-term user control via decoder recalibration, relatively little work has been dedicated to making the decoding algorithm more resilient to signal nonstationarities. Here, we describe how principled kernel selection with gaussian process regression can be used within a Bayesian filtering framework to mitigate the effects of commonly encountered nonstationarities. Given a supervised training set of (neural features, intention to move in a direction)-pairs, we use gaussian process regression to predict the intention given the neural data. We apply kernel embedding for each neural feature with the standard radial basis function. The multiple kernels are then summed together across each neural dimension, which allows the kernel to effectively ignore large differences that occur only in a single feature. The summed kernel is used for real-time predictions of the posterior mean and variance under a gaussian process framework. The predictions are then filtered using the discriminative Kalman filter to produce an estimate of the neural intention given the history of neural data. We refer to the multiple kernel approach combined with the discriminative Kalman filter as the MK-DKF. We found that the MK-DKF decoder was more resilient to nonstationarities frequently encountered in-real world settings yet provided similar performance to the currently used Kalman decoder. These results demonstrate a method by which neural decoding can be made more resistant to nonstationarities.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3