Variational log‐Gaussian point‐process methods for grid cells

Author:

Rule Michael Everett1ORCID,Chaudhuri‐Vayalambrone Prannoy2ORCID,Krstulovic Marino2ORCID,Bauza Marius3ORCID,Krupic Julija2ORCID,O'Leary Timothy1ORCID

Affiliation:

1. Engineering Department University of Cambridge Cambridge UK

2. Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK

3. Sainsbury Wellcome Centre, University College London London UK

Abstract

AbstractWe present practical solutions to applying Gaussian‐process (GP) methods to calculate spatial statistics for grid cells in large environments. GPs are a data efficient approach to inferring neural tuning as a function of time, space, and other variables. We discuss how to design appropriate kernels for grid cells, and show that a variational Bayesian approach to log‐Gaussian Poisson models can be calculated quickly. This class of models has closed‐form expressions for the evidence lower‐bound, and can be estimated rapidly for certain parameterizations of the posterior covariance. We provide an implementation that operates in a low‐rank spatial frequency subspace for further acceleration, and demonstrate these methods on experimental data.

Funder

European Research Council

Human Frontier Science Program

Isaac Newton Trust

Kavli Foundation

Leverhulme Trust

Medical Research Council

Nvidia

Royal Society

School of Clinical Medicine, University of Cambridge

UK Dementia Research Institute

Wellcome Trust

Publisher

Wiley

Subject

Cognitive Neuroscience

Reference51 articles.

1. Bradbury J. Frostig R. Hawkins P. Johnson M. J. Leary C. Maclaurin D. &Wanderman‐Milne S.(2018).JAX: composable transformations of Python+NumPy programs.http://github.com/google/jax

2. Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression

3. Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning

4. Hybrid Krylov Methods for Nonlinear Systems of Equations

5. Gaussian Kullback‐Leibler approximate inference;Challis E.;Journal of Machine Learning Research,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3