Discovering Functional Neuronal Connectivity from Serial Patterns in Spike Train Data

Author:

Diekman Casey1,Dasgupta Kohinoor2,Nair Vijay2,Unnikrishnan K. P.3

Affiliation:

1. Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.

2. Department of Statistics, University of Michigan, Ann Arbor, MI 48109, U.S.A.

3. Center for Biomedical Research Informatics, NorthShore University HealthSystem, Evanston, IL 60201, U.S.A.

Abstract

Repeating patterns of precisely timed activity across a group of neurons (called frequent episodes) are indicative of networks in the underlying neural tissue. This letter develops statistical methods to determine functional connectivity among neurons based on nonoverlapping occurrences of episodes. We study the distribution of episode counts and develop a two-phase strategy for identifying functional connections. For the first phase, we develop statistical procedures that are used to screen all two-node episodes and identify possible functional connections (edges). For the second phase, we develop additional statistical procedures to prune the two-node episodes and remove false edges that can be attributed to chains or fan-out structures. The restriction to nonoverlapping occurrences makes the counting of all two-node episodes in phase 1 computationally efficient. The second (pruning) phase is critical since phase 1 can yield a large number of false connections. The scalability of the two-phase approach is examined through simulation. The method is then used to reconstruct the graph structure of observed neuronal networks, first from simulated data and then from recordings of cultured cortical neurons.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3