Spontaneous Clustering via Minimum Gamma-Divergence

Author:

Notsu Akifumi1,Komori Osamu2,Eguchi Shinto3

Affiliation:

1. Department of Statistical Science, Graduate University for Advanced Studies, Tachikawa, Tokyo 190-8562, Japan

2. Institute of Statistical Mathematics, Tachikawa, Tokyo 190-8562, Japan

3. Institute of Statistical Mathematics and Graduate University for Advanced Studies, Tachikawa, Tokyo 190-8562, Japan

Abstract

We propose a new method for clustering based on local minimization of the gamma-divergence, which we call spontaneous clustering. The greatest advantage of the proposed method is that it automatically detects the number of clusters that adequately reflect the data structure. In contrast, existing methods, such as K-means, fuzzy c-means, or model-based clustering need to prescribe the number of clusters. We detect all the local minimum points of the gamma-divergence, by which we define the cluster centers. A necessary and sufficient condition for the gamma-divergence to have local minimum points is also derived in a simple setting. Applications to simulated and real data are presented to compare the proposed method with existing ones.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Parameter Estimation for Enhancing Motor Imaginary EEG Classification;Proceedings of the 2023 International Conference on Advances in Artificial Intelligence and Applications;2023-11-18

2. Robust Clustering with Normal Mixture Models: A Pseudo β-Likelihood Approach;Econometrics and Statistics;2023-11

3. Unsupervised Learning Algorithms;Minimum Divergence Methods in Statistical Machine Learning;2022

4. Information Divergence;Minimum Divergence Methods in Statistical Machine Learning;2022

5. Spectral embedded generalized mean based k-nearest neighbors clustering with S-distance;Expert Systems with Applications;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3