Author:
Eguchi Shinto,Komori Osamu
Reference63 articles.
1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (pp. 267–281).
2. Amari, S. (1985). Differential-geometrical methods in statistics. Lecture Notes on Statistics, 28.
3. Amari, S. (2016). Information geometry and its applications. Berlin: Springer.
4. Amari, S. (1982). Differential geometry of curved exponential families-curvatures and information loss. The Annals of Statistics, 10, 357–385.
5. Amari, S. (2014). Information geometry of positive measures and positive-definite matrices: Decomposable dually flat structure. Entropy, 16, 2131–2145.