Likelihood Methods for Point Processes with Refractoriness

Author:

Citi Luca1,Ba Demba1,Brown Emery N.1,Barbieri Riccardo1

Affiliation:

1. Department of Anesthesia, Massachusetts General Hospital–Harvard Medical School, Boston, MA 02129, and Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02142, U.S.A.

Abstract

Likelihood-based encoding models founded on point processes have received significant attention in the literature because of their ability to reveal the information encoded by spiking neural populations. We propose an approximation to the likelihood of a point-process model of neurons that holds under assumptions about the continuous time process that are physiologically reasonable for neural spike trains: the presence of a refractory period, the predictability of the conditional intensity function, and its integrability. These are properties that apply to a large class of point processes arising in applications other than neuroscience. The proposed approach has several advantages over conventional ones. In particular, one can use standard fitting procedures for generalized linear models based on iteratively reweighted least squares while improving the accuracy of the approximation to the likelihood and reducing bias in the estimation of the parameters of the underlying continuous-time model. As a result, the proposed approach can use a larger bin size to achieve the same accuracy as conventional approaches would with a smaller bin size. This is particularly important when analyzing neural data with high mean and instantaneous firing rates. We demonstrate these claims on simulated and real neural spiking activity. By allowing a substantive increase in the required bin size, our algorithm has the potential to lower the barrier to the use of point-process methods in an increasing number of applications.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3