Event Detection and Classification from Multimodal Time Series with Application to Neural Data

Author:

Sadras Nitin,Pesaran Bijan,Shanechi Maryam M.ORCID

Abstract

AbstractThe detection of events in time-series data is a common signal-processing problem. When the data can be modeled as a known template signal with an unknown delay in Gaussian noise, detection of the template signal can be done with a traditional matched filter. However, in many applications, the event of interest is represented in multimodal data consisting of both Gaussian and point-process time series. Neuroscience experiments, for example, can simultaneously record multimodal neural signals such as local field potentials (LFPs), which can be modeled as Gaussian, and neuronal spikes, which can be modeled as point processes. Currently, no method exists for event detection from such multimodal data, and as such our objective in this work is to develop a method to meet this need. Here we address this challenge by developing the multimodal event detector (MED) algorithm which simultaneously estimates event times and classes. To do this, we write a multimodal likelihood function for Gaussian and point-process observations and derive the associated maximum likelihood estimator of simultaneous event times and classes. We additionally introduce a cross-modal scaling parameter to account for model mismatch in real datasets. We validate this method in extensive simulations as well as in a neural spike-LFP dataset recorded during an eye-movement task, where the events of interest are eye movements with unknown times and directions. We show that the MED can successfully detect eye movement onset and classify eye movement direction. Further, the MED successfully combines information across data modalities, with multimodal performance exceeding unimodal performance. This method can facilitate applications such as the discovery of latent events in multimodal neural population activity and the development of brain-computer interfaces for naturalistic settings without constrained tasks or prior knowledge of event times.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3