Efficient Decoding of Compositional Structure in Holistic Representations

Author:

Kleyko Denis12,Bybee Connor3,Huang Ping-Chen4,Kymn Christopher J.5,Olshausen Bruno A.6,Frady E. Paxon7,Sommer Friedrich T.18

Affiliation:

1. Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA 94720, U.S.A.

2. Intelligent Systems Laboratory, Research Institutes of Sweden, 16440 Kista, Sweden denis.kleyko@ri.se

3. Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA 94720, U.S.A. bybee@berkeley.edu

4. Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA 94720, U.S.A. pingchen.huang@berkeley.edu

5. Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA 94720, U.S.A. cjkymn@berkeley.edu

6. Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA 94720, U.S.A. baolshausen@berkeley.edu

7. Neuromorphic Computing Laboratory, Intel Labs, Santa Clara, CA 95054, U.S.A. e.paxon.frady@intel.com

8. Neuromorphic Computing Laboratory, Intel Labs, Santa Clara, CA 95054, U.S.A. fsommer@berkeley.edu

Abstract

Abstract We investigate the task of retrieving information from compositional distributed representations formed by hyperdimensional computing/vector symbolic architectures and present novel techniques that achieve new information rate bounds. First, we provide an overview of the decoding techniques that can be used to approach the retrieval task. The techniques are categorized into four groups. We then evaluate the considered techniques in several settings that involve, for example, inclusion of external noise and storage elements with reduced precision. In particular, we find that the decoding techniques from the sparse coding and compressed sensing literature (rarely used for hyperdimensional computing/vector symbolic architectures) are also well suited for decoding information from the compositional distributed representations. Combining these decoding techniques with interference cancellation ideas from communications improves previously reported bounds (Hersche et al., 2021) of the information rate of the distributed representations from 1.20 to 1.40 bits per dimension for smaller codebooks and from 0.60 to 1.26 bits per dimension for larger codebooks.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference60 articles.

1. Toward fast reliable communication at rates near capacity with gaussian noise;Barron,2010

2. A fast iterative shrinkage-thresholding algorithm for linear inverse problems;Beck;SIAM Journal on Imaging Sciences,2009

3. Associative long short-term memory;Danihelka,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Design Choices in Similarity-Preserving Sparse Randomized Embeddings;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Linear Codes for Hyperdimensional Computing;Neural Computation;2024-05-10

3. Compositional Factorization of Visual Scenes with Convolutional Sparse Coding and Resonator Networks;2024 Neuro Inspired Computational Elements Conference (NICE);2024-04-23

4. Hardware-Aware Static Optimization of Hyperdimensional Computations;Proceedings of the ACM on Programming Languages;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3