Hardware-Aware Static Optimization of Hyperdimensional Computations

Author:

Yi Pu (Luke)1ORCID,Achour Sara1ORCID

Affiliation:

1. Stanford University, Stanford, USA

Abstract

Binary spatter code (BSC)-based hyperdimensional computing (HDC) is a highly error-resilient approximate computational paradigm suited for error-prone, emerging hardware platforms. In BSC HDC, the basic datatype is a hypervector , a typically large binary vector, where the size of the hypervector has a significant impact on the fidelity and resource usage of the computation. Typically, the hypervector size is dynamically tuned to deliver the desired accuracy; this process is time-consuming and often produces hypervector sizes that lack accuracy guarantees and produce poor results when reused for very similar workloads. We present Heim, a hardware-aware static analysis and optimization framework for BSC HD computations. Heim analytically derives the minimum hypervector size that minimizes resource usage and meets the target accuracy requirement. Heim guarantees the optimized computation converges to the user-provided accuracy target on expectation, even in the presence of hardware error. Heim deploys a novel static analysis procedure that unifies theoretical results from the neuroscience community to systematically optimize HD computations. We evaluate Heim against dynamic tuning-based optimization on 25 benchmark data structures. Given a 99% accuracy requirement, Heim-optimized computations achieve a 99.2%-100.0% median accuracy, up to 49.5% higher than dynamic tuning-based optimization, while achieving 1.15x-7.14x reductions in hypervector size compared to HD computations that achieve comparable query accuracy and finding parametrizations 30.0x-100167.4x faster than dynamic tuning-based approaches. We also use Heim to systematically evaluate the performance benefits of using analog CAMs and multiple-bit-per-cell ReRAM over conventional hardware, while maintaining iso-accuracy – for both emerging technologies, we find usages where the emerging hardware imparts significant benefits.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference63 articles.

1. Approximate computation with outlier detection in Topaz

2. Toygun Basaklar , Yigit Tuncel , Shruti Yadav Narayana , Suat Gumussoy, and Umit Y Ogras. 2021 . Hypervector de sign for efficient hyperdimensional computing on edge devices. arXiv preprint arXiv:2103.06709, https://doi.org/10.48550/arXiv.2103.06709 10.48550/arXiv.2103.06709 Toygun Basaklar, Yigit Tuncel, Shruti Yadav Narayana, Suat Gumussoy, and Umit Y Ogras. 2021. Hypervector design for efficient hyperdimensional computing on edge devices. arXiv preprint arXiv:2103.06709, https://doi.org/10.48550/arXiv.2103.06709

3. The gem5 simulator

4. Kenneth L Clarkson Shashanka Ubaru and Elizabeth Yang. 2023. Capacity Analysis of Vector Symbolic Architectures. arXiv preprint arXiv:2301.10352 https://doi.org/10.48550/arXiv.2301.10352 10.48550/arXiv.2301.10352

5. Kenneth L Clarkson Shashanka Ubaru and Elizabeth Yang. 2023. Capacity Analysis of Vector Symbolic Architectures. arXiv preprint arXiv:2301.10352 https://doi.org/10.48550/arXiv.2301.10352

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3