Implicit Regularization and Momentum Algorithms in Nonlinearly Parameterized Adaptive Control and Prediction

Author:

Boffi Nicholas M.1,Slotine Jean-Jacques E.2

Affiliation:

1. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.

2. Nonlinear Systems Laboratory, MIT, Cambridge, MA 02139, U.S.A.

Abstract

Stable concurrent learning and control of dynamical systems is the subject of adaptive control. Despite being an established field with many practical applications and a rich theory, much of the development in adaptive control for nonlinear systems revolves around a few key algorithms. By exploiting strong connections between classical adaptive nonlinear control techniques and recent progress in optimization and machine learning, we show that there exists considerable untapped potential in algorithm development for both adaptive nonlinear control and adaptive dynamics prediction. We begin by introducing first-order adaptation laws inspired by natural gradient descent and mirror descent. We prove that when there are multiple dynamics consistent with the data, these non-Euclidean adaptation laws implicitly regularize the learned model. Local geometry imposed during learning thus may be used to select parameter vectors—out of the many that will achieve perfect tracking or prediction—for desired properties such as sparsity. We apply this result to regularized dynamics predictor and observer design, and as concrete examples, we consider Hamiltonian systems, Lagrangian systems, and recurrent neural networks. We subsequently develop a variational formalism based on the Bregman Lagrangian. We show that its Euler Lagrange equations lead to natural gradient and mirror descent-like adaptation laws with momentum, and we recover their first-order analogues in the infinite friction limit. We illustrate our analyses with simulations demonstrating our theoretical results.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A geometric characterization of observability in inertial parameter identification;The International Journal of Robotics Research;2024-07-25

2. Π-ORFit: One-Pass Learning with Bregman Projection;2024 American Control Conference (ACC);2024-07-10

3. Accelerated Gradient Approach For Deep Neural Network-Based Adaptive Control of Unknown Nonlinear Systems;IEEE Transactions on Neural Networks and Learning Systems;2024

4. Robot Model Identification and Learning: A Modern Perspective;Annual Review of Control, Robotics, and Autonomous Systems;2023-10-20

5. Adaptive NMPC-RBF with Application to Manipulator Robots;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3