Robot Model Identification and Learning: A Modern Perspective

Author:

Lee Taeyoon1,Kwon Jaewoon1,Wensing Patrick M.2,Park Frank C.3

Affiliation:

1. Naver Labs, Seongnam, South Korea;,

2. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA;

3. Department of Mechanical Engineering, Seoul National University, Seoul, South Korea; email:

Abstract

In recent years, the increasing complexity and safety-critical nature of robotic tasks have highlighted the importance of accurate and reliable robot models. This trend has led to a growing belief that, given enough data, traditional physics-based robot models can be replaced by appropriately trained deep networks or their variants. Simultaneously, there has been a renewed interest in physics-based simulation, fueled by the widespread use of simulators to train reinforcement learning algorithms in the sim-to-real paradigm. The primary objective of this review is to present a unified perspective on the process of determining robot models from data, commonly known as system identification or model learning in different subfields. The review aims to illuminate the key challenges encountered and highlight recent advancements in system identification for robotics. Specifically, we focus on recent breakthroughs that leverage the geometry of the identification problem and incorporate physics-based knowledge beyond mere first-principles model parameterizations. Through these efforts, we strive to provide a contemporary outlook on this problem, bridging classical findings with the latest progress in the field. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 7 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Publisher

Annual Reviews

Subject

Artificial Intelligence,Human-Computer Interaction,Engineering (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recursive Least Squares with Log-Determinant Divergence Regularisation for Online Inertia Identification;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3