An Investigation of the Stochastic Hodgkin-Huxley Models Under Noisy Rate Functions

Author:

Güler Marifi1

Affiliation:

1. Department of Computer Engineering, Eastern Mediterranean University, Famagusta, via Mersin-10, Turkey

Abstract

The effects of ion channel fluctuations on the transmembrane voltage activity are potentially profound in small-size excitable membrane patches. Different groups have extended Hodgkin-Huxley equations into stochastic differential equations to capture the effects of ion channel noise analytically (Fox & Lu, 1994 ; Linaro, Storace, & Giugliano, 2011 ; Güler, 2013 ). Studies have shown that the accuracy of spiking statistics by Fox and Lu's model does not match well with the corresponding statistics from the exact microscopic simulations. The models of both Linaro et al. and Güler, however, were found to produce highly accurate statistics. Here we extend the examination of these models to the case in which the rate functions for the opening and closing of gates are under the influence of noise. For that purpose, the usual rate functions are accompanied additively by Ornstein-Uhlenbeck–type stochastic angular variables. Moreover, we argue that the existence of such noise in the rate functions is a plausible physiological phenomenon for finite-size membranes. It is observed that the presence of noise in the rates is not effective on the degree of inaccuracies within the Fox and Lu model. Güler model's accuracy is found to remain high as in the case of noise free rates. But the performance of Linaro et al.’s model is seen to degrade seriously with the increasing strength of the introduced rate function noise. We attribute this failure of Linaro et al.’s model to the use of the covariance function of open channels at the steady state, in its derivation.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3