Fast and Accurate Langevin Simulations of Stochastic Hodgkin-Huxley Dynamics

Author:

Pu Shusen1,Thomas Peter J.2

Affiliation:

1. Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106, U.S.A.

2. Department of Mathematics, Applied Mathematics, and Statistics; Biology; Cognitive Science; and Electrical, Computer, and Systems Engineering: Case Western Reserve University, Cleveland, OH 44106, U.S.A.

Abstract

Fox and Lu introduced a Langevin framework for discrete-time stochastic models of randomly gated ion channels such as the Hodgkin-Huxley (HH) system. They derived a Fokker-Planck equation with state-dependent diffusion tensor [Formula: see text] and suggested a Langevin formulation with noise coefficient matrix [Formula: see text] such that SS[Formula: see text]. Subsequently, several authors introduced a variety of Langevin equations for the HH system. In this article, we present a natural 14-dimensional dynamics for the HH system in which each directed edge in the ion channel state transition graph acts as an independent noise source, leading to a 14 [Formula: see text] 28 noise coefficient matrix [Formula: see text]. We show that (1) the corresponding 14D system of ordinary differential equations is consistent with the classical 4D representation of the HH system; (2) the 14D representation leads to a noise coefficient matrix [Formula: see text] that can be obtained cheaply on each time step, without requiring a matrix decomposition; (3) sample trajectories of the 14D representation are pathwise equivalent to trajectories of Fox and Lu's system, as well as trajectories of several existing Langevin models; (4) our 14D representation (and those equivalent to it) gives the most accurate interspike interval distribution, not only with respect to moments but under both the [Formula: see text] and [Formula: see text] metric-space norms; and (5) the 14D representation gives an approximation to exact Markov chain simulations that are as fast and as efficient as all equivalent models. Our approach goes beyond existing models, in that it supports a stochastic shielding decomposition that dramatically simplifies [Formula: see text] with minimal loss of accuracy under both voltage- and current-clamp conditions.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3