Sensitivity of Sparse Codes to Image Distortions

Author:

Luther Kyle1,Seung H. Sebastian2

Affiliation:

1. Department of Physics and Neuroscience Institute, Princeton University, Princeton, NJ 08544, U.S.A. kluther@princeton.edu

2. Neuroscience Institute and Department of Computer Science, Princeton University, Princeton, NJ 08544, U.S.A. sseung@princeton.edu

Abstract

Abstract Sparse coding has been proposed as a theory of visual cortex and as an unsupervised algorithm for learning representations. We show empirically with the MNIST data set that sparse codes can be very sensitive to image distortions, a behavior that may hinder invariant object recognition. A locally linear analysis suggests that the sensitivity is due to the existence of linear combinations of active dictionary elements with high cancellation. A nearest-neighbor classifier is shown to perform worse on sparse codes than original images. For a linear classifier with a sufficiently large number of labeled examples, sparse codes are shown to yield higher accuracy than original images, but no higher than a representation computed by a random feedforward net. Sensitivity to distortions seems to be a basic property of sparse codes, and one should be aware of this property when applying sparse codes to invariant object recognition.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference33 articles.

1. A fast iterative shrinkage-thresholding algorithm for linear inverse problems;Beck;SIAM J. Imaging Sciences,2009

2. Learning intermediate-level representations of form and motion from natural movies;Cadieu;Neural Computation,2012

3. The restricted isometry property and its implications for compressed sensing;Candes;Comptes rendus mathematique,2008

4. A simple framework for contrastive learning of visual representations;Chen,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3