Learning Intermediate-Level Representations of Form and Motion from Natural Movies

Author:

Cadieu Charles F.1,Olshausen Bruno A.1

Affiliation:

1. Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, and School of Optometry, University of California, Berkeley, Berkeley, CA 94720, U.S.A.

Abstract

We present a model of intermediate-level visual representation that is based on learning invariances from movies of the natural environment. The model is composed of two stages of processing: an early feature representation layer and a second layer in which invariances are explicitly represented. Invariances are learned as the result of factoring apart the temporally stable and dynamic components embedded in the early feature representation. The structure contained in these components is made explicit in the activities of second-layer units that capture invariances in both form and motion. When trained on natural movies, the first layer produces a factorization, or separation, of image content into a temporally persistent part representing local edge structure and a dynamic part representing local motion structure, consistent with known response properties in early visual cortex (area V1). This factorization linearizes statistical dependencies among the first-layer units, making them learnable by the second layer. The second-layer units are split into two populations according to the factorization in the first layer. The form-selective units receive their input from the temporally persistent part (local edge structure) and after training result in a diverse set of higher-order shape features consisting of extended contours, multiscale edges, textures, and texture boundaries. The motion-selective units receive their input from the dynamic part (local motion structure) and after training result in a representation of image translation over different spatial scales and directions, in addition to more complex deformations. These representations provide a rich description of dynamic natural images and testable hypotheses regarding intermediate-level representation in visual cortex.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3