Scalability of Large Neural Network Simulations via Activity Tracking With Time Asynchrony and Procedural Connectivity

Author:

Mascart Cyrille1,Scarella Gilles23,Reynaud-Bouret Patricia4,Muzy Alexandre5

Affiliation:

1. Université Côte d'Azur, CNRS, I3S, 01603 Nice, France mascart.cyrille@gmail.com

2. Université Côte d'Azur, CNRS, I3S, France

3. Université Côte d'Azur, CNRS, LJAD, 06103 Nice, France gscarella@i3s.unice.fr

4. Université Côte d'Azur, CNRS, LJAD, 06103 Nice, France Patricia.REYNAUD-BOURET@univ-cotedazur.fr

5. Université Côte d'Azur, CNRS, I3S, 06103 Nice, France muzy@i3s.unice.fr

Abstract

Abstract We present a new algorithm to efficiently simulate random models of large neural networks satisfying the property of time asynchrony. The model parameters (average firing rate, number of neurons, synaptic connection probability, and postsynaptic duration) are of the order of magnitude of a small mammalian brain or of human brain areas. Through the use of activity tracking and procedural connectivity (dynamical regeneration of synapses), computational and memory complexities of this algorithm are proved to be theoretically linear with the number of neurons. These results are experimentally validated by sequential simulations of millions of neurons and billions of synapses running in a few minutes using a single thread of an equivalent desktop computer.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3