Improving the Antinoise Ability of DNNs via a Bio-Inspired Noise Adaptive Activation Function Rand Softplus

Author:

Chen Yunhua1,Mai Yingchao1,Xiao Jinsheng2,Zhang Ling1

Affiliation:

1. School of Computers, Guangdong University of Technology, Guangzhou 51006, China

2. School of Electronic Information, Wuhan University, Wuhan 430072, China

Abstract

Although deep neural networks (DNNs) have led to many remarkable results in cognitive tasks, they are still far from catching up with human-level cognition in antinoise capability. New research indicates how brittle and susceptible current models are to small variations in data distribution. In this letter, we study the stochasticity-resistance character of biological neurons by simulating the input-output response process of a leaky integrate-and-fire (LIF) neuron model and proposed a novel activation function, rand softplus (RSP), to model the response process. In RSP, a scale factor [Formula: see text] is employed to mimic the stochasticity-adaptability of biological neurons, thereby enabling the antinoise capability of a DNN to be improved by the novel activation function. We validated the performance of RSP with a 19-layer residual network (ResNet) and a 19-layer visual geometry group (VGG) on facial expression recognition data sets and compared it with other popular activation functions, such as rectified linear units (ReLU), softplus, leaky ReLU (LReLU), exponential linear unit (ELU), and noisy softplus (NSP). The experimental results show that RSP is applied to VGG-19 or ResNet-19, and the average recognition accuracy under five different noise levels exceeds the other functions on both of the two facial expression data sets; in other words, RSP outperforms the other activation functions in noise resistance. Compared with the application in ResNet-19, the application of RSP in VGG-19 can improve a network's antinoise performance to a greater extent. In addition, RSP is easier to train compared to NSP because it has only one parameter to be calculated automatically according to the input data. Therefore, this work provides the deep learning community with a novel activation function that can better deal with overfitting problems.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3