Dynamical Regimes in Neural Network Models of Matching Behavior

Author:

Iigaya Kiyohito1,Fusi Stefano2

Affiliation:

1. Center for Theoretical Neuroscience, Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, and Department of Physics, Columbia University, New York, NY 10027, U.S.A.

2. Center for Theoretical Neuroscience, Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, U.S.A.

Abstract

The matching law constitutes a quantitative description of choice behavior that is often observed in foraging tasks. According to the matching law, organisms distribute their behavior across available response alternatives in the same proportion that reinforcers are distributed across those alternatives. Recently a few biophysically plausible neural network models have been proposed to explain the matching behavior observed in the experiments. Here we study systematically the learning dynamics of these networks while performing a matching task on the concurrent variable interval (VI) schedule. We found that the model neural network can operate in one of three qualitatively different regimes depending on the parameters that characterize the synaptic dynamics and the reward schedule: (1) a matching behavior regime, in which the probability of choosing an option is roughly proportional to the baiting fractional probability of that option; (2) a perseverative regime, in which the network tends to make always the same decision; and (3) a tristable regime, in which the network can either perseverate or choose the two targets randomly approximately with the same probability. Different parameters of the synaptic dynamics lead to different types of deviations from the matching law, some of which have been observed experimentally. We show that the performance of the network depends on the number of stable states of each synapse and that bistable synapses perform close to optimal when the proper learning rate is chosen. Because our model provides a link between synaptic dynamics and qualitatively different behaviors, this work provides us with insight into the effects of neuromodulators on adaptive behaviors and psychiatric disorders.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3