Undermatching is a consequence of policy compression

Author:

Bari Bilal A.ORCID,Gershman Samuel J.ORCID

Abstract

AbstractThe matching law describes the tendency of agents to match the ratio of choices allocated to the ratio of rewards received when choosing among multiple options (Herrnstein, 1961). Perfect matching, however, is infrequently observed. Instead, agents tend to undermatch, or bias choices towards the poorer option. Overmatching, or the tendency to bias choices towards the richer option, is rarely observed. Despite the ubiquity of undermatching, it has received an inadequate normative justification. Here, we assume agents not only seek to maximize reward, but also seek to minimize cognitive cost, which we formalize as policy complexity (the mutual information between actions and states of the environment). Policy complexity measures the extent to which an agent’s policy is state-dependent. Our theory states that capacity-constrained agents (i.e., agents that must compress their policies to reduce complexity), can only undermatch or perfectly match, but not overmatch, consistent with the empirical evidence. Moreover, we validate a novel prediction about which task conditions exaggerate undermatching. Finally, we argue that a reduction in undermatching with higher dopamine levels in patients with Parkinson’s disease is consistent with an increased policy complexity.Significance statementThe matching law describes the tendency of agents to match the ratio of choices allocated to different options to the ratio of reward received. For example, if option A yields twice as much reward as option B, matching states that agents will choose option A twice as much. However, agents typically undermatch: they choose the poorer option more frequently than expected. Here, we assume that agents seek to simultaneously maximize reward and minimize the complexity of their action policies. We show that this theory explains when and why undermatching occurs. Neurally, we show that policy complexity, and by extension undermatching, is controlled by tonic dopamine, consistent with other evidence that dopamine plays an important role in cognitive resource allocation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3